
RSA Encryption
Tom Davis

tomrdavis@earthlink.net
http://www.geometer.org/mathcircles

October 10, 2003

1 Public Key Cryptography

One of the biggest problems in cryptography is the distribution of keys. Suppose you
live in the United States and want to pass information secretly to your friend in Europe.
If you truly want to keep the information secret, you need to agree on some sort of key
that you and he can use to encode/decode messages. But you don’t want to keep using
the same key, or you will make it easier and easier for others to crack your cipher.
But it’s also a pain to get keys to your friend. If you mail them, they might be stolen. If
you send them cryptographically, and someone has broken your code, that person will
also have the next key. If you have to go to Europe regularly to hand-deliver the next
key, that is also expensive. If you hire some courier to deliver the new key, you have to
trust the courier, et cetera.

1.1 Trap-Door Ciphers

But imagine the following situation. Suppose you have a special method of encoding
and decoding that is “one way” in a sense. Imagine that the encoding is easy to do, but
decoding is very difficult. Then anyone in the world can encode a message, but only
one person can decode it. Such methods exist, and they are called “one way ciphers”
or “trap door ciphers”.
Here’s how they work. For each cipher, there is a key for encoding and a different key
for decoding. If you know the key for decoding, it is very easy to make the key for
encoding, but it is almost impossible to do the opposite—to start with the encoding key
and work out the decoding key.
So to communicate with your friend in Europe, each of you has a trap door cipher. You
make up a decoding key Da and generate the corresponding encoding key Ea. Your
friend does exactly the same thing, but he makes up a decoding key Db and generates
the corresponding encoding key Eb. You tell him Ea (but not Da) and he tells you Eb
(but not Db). Then you can send him messages by encoding using Eb (which only he
can decode) and vice-versa—he encodes messages to you using Ea (which only you
can decode, since you’re the only person with access to Da).
Now if you want to change to a new key, it is no big problem. Just make up new pairs
and exchange the encoding keys. If the encoding keys are stolen, it’s not a big deal.
The person who steals them can only encode messages—they can’t decode them. In
fact, the encoding keys (sometimes called “public keys”) could just be published in

1



a well-known location. It’s like saying, “If you want to send me a private message,
encode it using this key, and I will be the only person in the world who can read it.”
But be sure to keep the decoding key (the “private key”) secret.

1.2 Certification

There is, of couse, a problem with the scheme above. Since the public keys are really
public, anyone can “forge” a message to you. So your enemy can pretend to be your
friend and send you a message just like your friend can—they both have access to the
public key. Your enemy’s information can completely mislead you. So how can you be
certain that a message that says it is from your friend is really from your friend?
Here is one way to do it, assuming that you both have the public and private keys Ea,
Eb, Da, andDb as discussed in the previous section. Suppose I wish to send my friend
a message that only he can read, but in such a way that he is certain that the message is
from me. Here’s how to do it.
I will take my name, and pretend that it is an encoded message, and decode it using
Da. I am the only person who can do this, since I am the only person who knows Da.
Then I include that text in the real message I wish to send, and I encode the whole mess
using Eb, which only my friend knows how to decode.
When he receives it, he will decode it using Db, and he will have a message with an
additional piece of what looks to him like junk characters. The junk characters are what
I got by “decoding” my name. So he simply encodes the junk using my public key Ea
and makes certain that it is my name. Since I am the only one who knows how to make
text that will encode to my name, he knows the message is from me.
You can encode any text for certification, and in fact, you should probably change it
with each message, but it’s easy to do. Your message to your friend would look like
this:
“Attack at dawn. Here is my decoding of ’ABCDEFG’: ’JDLEODK’.”
To assure privacy, for each message, change the “ABCDEFG” and the corresponding
“JDLEODK”.

2 RSA Encryption

OK, in the previous section we described what is meant by a trap-door cipher, but how
do you make one? One commonly used cipher of this form is called “RSA Encryption”,
where “RSA” are the initials of the three creators: “Rivest, Shamir, and Adleman”. It
is based on the following idea:
It is very simply to multiply numbers together, especially with computers. But it can
be very difficult to factor numbers. For example, if I ask you to multiply together
34537 and 99991, it is a simple matter to punch those numbers into a calculator and
3453389167. But the reverse problem is much harder.
Suppose I give you the number 1459160519. I’ll even tell you that I got it by multi-

2



plying together two integers. Can you tell me what they are? This is a very difficult
problem. A computer can factor that number fairly quickly, but (although there are
some tricks) it basically does it by trying most of the possible combinations. For any
size number, the computer has to check something that is of the order of the size of
the square-root of the number to be factored. In this case, that square-root is roughly
38000.
Now it doesn’t take a computer long to try out 38000 possibilities, but what if the
number to be factored is not ten digits, but rather 400 digits? The square-root of a
number with 400 digits is a number with 200 digits. The lifetime of the universe is
approximately 1018 seconds – an 18 digit number. Assuming a computer could test
one million factorizations per second, in the lifetime of the universe it could check
1024 possibilities. But for a 400 digit product, there are 10200 possibilties. This means
the computer would have to run for 10176 times the life of the universe to factor the
large number.
It is, however, not too hard to check to see if a number is prime—in other words to
check to see that it cannot be factored. If it is not prime, it is difficult to factor, but if it
is prime, it is not hard to show it is prime.
So RSA encryption works like this. I will find two huge prime numbers, p and q that
have 100 or maybe 200 digits each. I will keep those two numbers secret (they are
my private key), and I will multiply them together to make a number N = pq. That
number N is basically my public key. It is relatively easy for me to get N ; I just need
to multiply my two numbers. But if you know N , it is basically impossible for you
to find p and q. To get them, you need to factor N , which seems to be an incredibly
difficult problem.
But exactly how is N used to encode a message, and how are p and q used to decode
it? Below is presented a complete example, but I will use tiny prime numbers so it is
easy to follow the arithmetic. In a real RSA encryption system, keep in mind that the
prime numbers are huge.
In the following example, suppose that person A wants to make a public key, and that
person B wants to use that key to send A a message. In this example, we will suppose
that the message A sends to B is just a number. We assume that A and B have agreed
on a method to encode text as numbers. Here are the steps:

1. Person A selects two prime numbers. We will use p = 23 and q = 41 for this
example, but keep in mind that the real numbers person A should use should be
much larger.

2. Person A multiplies p and q together to get pq = (23)(41) = 943. 943 is
the “public key”, which he tells to person B (and to the rest of the world, if he
wishes).

3. Person A also chooses another number e which must be relatively prime to (p−
1)(q − 1). In this case, (p− 1)(q − 1) = (22)(40) = 880, so e = 7 is fine. e is
also part of the public key, so B also is told the value of e.

3



4. Now B knows enough to encode a message to A. Suppose, for this example, that
the message is the numberM = 35.

5. B calculates the value of C = M e(mod N) = 357(mod 943).

6. 357 = 64339296875 and 64339296875(mod 943) = 545. The number 545 is
the encoding that B sends to A.

7. Now A wants to decode 545. To do so, he needs to find a number d such that
ed = 1(mod (p − 1)(q − 1)), or in this case, such that 7d = 1(mod 880). A
solution is d = 503, since 7 ∗ 503 = 3521 = 4(880) + 1 = 1(mod 880).

8. To find the decoding, A must calculate Cd(mod N) = 545503(mod 943). This
looks like it will be a horrible calculation, and at first it seems like it is, but notice
that 503 = 256+128+64+32+16+4+2+1 (this is just the binary expansion
of 503). So this means that

545503 = 545256+128+64+32+16+4+2+1 = 545256545128 · · · 5451.

But since we only care about the result (mod 943), we can calculate all the par-
tial results in that modulus, and by repeated squaring of 545, we can get all
the exponents that are powers of 2. For example, 5452(mod 943) = 545 ·
545 = 297025(mod 943) = 923. Then square again: 5454(mod 943) =
(5452)2(mod 943) = 923 · 923 = 851929(mod 943) = 400, and so on. We
obtain the following table:

5451(mod 943) = 545

5452(mod 943) = 923

5454(mod 943) = 400

5458(mod 943) = 633

54516(mod 943) = 857

54532(mod 943) = 795

54564(mod 943) = 215

545128(mod 943) = 18

545256(mod 943) = 324

So the result we want is:

545503(mod 943) = 324 · 18 · 215 · 795 · 857 · 400 · 923 · 545(mod 943) = 35.

Using this tedious (but simple for a computer) calculation, A can decode B’s message
and obtain the original message N = 35.

4



2.1 RSA Exercise

OK, now to see if you understand the RSA decryption algorithm, suppose you are
person A, and you have chosen as your two primes p = 97 and q = 173, and you have
chosen e = 5. Thus you told B that N = 16781 (which is just pq) and you told him
that e = 5.
He encodes a message (a number) for you and tells you that the encoding is 5347. Can
you figure out the original message? Hint—well, not really a hint, but a check of your
final answer: it is a four-digit number that is a pattern of digits.

3 How It Works

RSA cryptography is based on the following theorems:

Theorem 1 (Fermat’s Little Theorem) If p is a prime number, and a is an integer
such that (a, p) = 1, then

ap−1 = 1(mod p).

Proof: Consider the numbers (a · 1), (a · 2), . . . (a · (p − 1)), all modulo p. They
are all different. If any of them were the same, say a · m = a · n(mod p), then
a · (m− n) = 0(mod p) so m− n must be a multiple of p. But since all m and n are
less than p, m = n.
Thus a ·1, a ·2, . . . , a · (p−1) must be a rearrangement of 1, 2, . . . , (p−1). So modulo
p, we have:

p−1∏

i=1

i =

p−1∏

i=1

a · i = ap−1

p−1∏

i=1

i,

so ap−1 = 1(mod p).

Theorem 2 (Fermat’s Theorem Extension) If (a,m) = 1 then aφ(m) = 1(mod m),
where φ(m) is the number of integers less than m that are relatively prime to m. The
number m is not necessarily prime.

Proof: Same idea as above. Suppose φ(m) = n. Then suppose that the n numbers
less than m that are relatively prime to m are:

a1, a2, a3, . . . , an.

Then a · a1, a · a2, . . . , a · an are also relatively prime to m, and must all be different,
so they must just be a rearrangement of the a1, . . . , an in some order. Thus:

n∏

i=1

ai =

n∏

i=1

a · ai = an
n∏

i=1

ai,

modulom, so an = 1(mod m).

5



Theorem 3 (Chinese Remainder Theorem) Let p and q be two numbers (not neces-
sarily primes), but such that (p, q) = 1. Then if a = b(mod p) and a = b(mod q) we
have a = b(mod pq).

Proof: If a = b(mod p) then p divides (a − b). Similarly, q divides (a − b). But p
and q are relatively prime, so pq divides (a− b). Consequently, a = b(mod pq). (This
is a special case with only two factors of what is usually called the Chinese remainder
theorem but it is all we need here.)

3.1 Proof of the Main Result

Based on the theorems above, here is why the RSA encryption scheme works.
Let p and q be two different (large) prime numbers, let 0 ≤ M < pq be a secret
message1, let d be an integer (usually small) that is relatively prime to (p− 1)(q − 1),
and let e be a number such that de = 1(mod (p − 1)(q − 1)). (We will see later how
to generate this e given d.) The encoded message is C = M d(mod pq), so we need to
show that the decoded message is given by M = Ce(mod pq).
Proof: Since de = 1(mod (p− 1)(q− 1)), de = 1 + k(p− 1)(q− 1) for some integer
k. Thus:

Ce = Mde = M1+k(p−1)(q−1) = M · (M (p−1)(q−1))k.

If M is relatively prime to p, then

Mde = M · (Mp−1)k(q−1) = M · (1)k(q−1) = M(mod p) (1)

By the extension of Fermat’s Theorem giving M p−1 = M(mod p) followed by a
multiplication of both sides by M . But if M is not relatively prime to p, then M is a
multiple of p, so equation 1 still holds because both sides will be zero, modulo p.
By exactly the same reasoning,

Mde = M ·M q−1 = M(mod q) (2)

If we apply the Chinese remainder theorem to equations 1 and 2, we obtain the result
we want: Mde = M(mod pq).
Finally, given the integer d, we will need to be able to find another integer e such that
de = 1(mod (p−1)(q−1)). To do so we can use the extension of Fermat’s theorem to
get dφ((p−1)(q−1)) = 1(mod (p−1)(q−1)), so dφ((p−1)(q−1))−1(mod (p−1)(q−1))
is a suitable value for e.

1If the message is long, break it up into a series of smaller messages such that each of them is smaller
than pq and encode each of them separately.

6


